The Schur multiplier of a semi-direct product
نویسندگان
چکیده
منابع مشابه
schur multiplier norm of product of matrices
for a ∈ mn, the schur multiplier of a is defined as s a(x) =a ◦ x for all x ∈ mn and the spectral norm of s a can be stateas ∥s a∥ = supx,0 ∥a ∥x ◦x ∥ ∥. the other norm on s a can be definedas ∥s a∥ω = supx,0 ω(ω s( ax (x ) )) = supx,0 ωω (a (x ◦x ) ), where ω(a) standsfor the numerical radius of a. in this paper, we focus on therelation between the norm of schur multiplier of product of matric...
متن کاملA tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1972
ISSN: 0019-2082
DOI: 10.1215/ijm/1256052393